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1 Let L be the length of the contour C. Given z € Q, define r = min,ec |z — w| to be the
distance between the point z and the contour C. Then for any Az with |Az| < r/2, we have
|s — (z + Az)| > |s — z| — |Az| > r/2. Note that
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Since f(s) is a continuous function, M = max,cq f(s) exists. From this we have
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This gives the desired result.
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2 Define a function g(z) = exp(f(z)). Since f(z) is entire, g(z) is also entire. Furthermore,
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Hence g(z) is an entire and bounded function. By Liouville’s theorem, g(z) must be constant.

Since f(z) is continuous and g(z) is a constant function, we must have f(z) = constant.
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3 Since f(z) is entire, we have f(z) = E anz", where a, = / 1(5) ds and r is arbitrary positive
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real number. In particular, since |f(2)| < M|z|, for n > 2 we have
f(s) Mr Mr  2rM 500
an = /|Z|_T s ds < length of the contour x s 27Trrn+1 = a1 0

Hence we have a,, = 0 for n > 2 and f(z) = ap+a1z. Since |f(z)| < M|z|, |ao| = |f(0)| < M(0) = 0.

So we have f(z) = a2 for some a; € C.

4 First, by Cauchy Integral formula, we have

]/ €4z = 27i(e®©®) = 2mi
|z|]=1 #

On the other hand,
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This implies
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By comparing the imaginary parts on both sides, we have
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5 Cauchy Integral formula states that for n =0,1,2,..., we have
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By the analyticity of the integrand, we also have
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Therefore we have
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6 Note that since the function }fz is not well-defined at z = 1, f is not analytic at z # 1. Further-
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more, for z # 1,
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This implies that the function tanh™*(z) is analytic on C\{z € C: z = z € (—o0, —1] U [1, 00)}.
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